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Abstract. A two-parameter family of discrete-time exactly-solvable exclusion processes on a one-
dimensional lattice is introduced, which contains the asymmetric simple exclusion process and the drop-
push model as particular cases. The process is rewritten in terms of boundary conditions, and the
conditional probabilities are calculated using the Bethe-ansatz. This is the discrete-time version of the
continuous-time processes already investigated in [1–3]. The drift- and diffusion-rates of the particles are
also calculated for the two-particle sector.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ga
Markov processes

1 Introduction

The asymmetric exclusion process and the problems re-
lated to it, including for example bipolymerization [4],
dynamical models of interface growth [5], traffic mod-
els [6], the noisy Burgers equation [7], and the study of
shocks [8,9], have been extensively studied in recent years.
The dynamical properties of this model have been studied
in [9,10]. As the results obtained by approaches like mean
field are not reliable in one dimension, it is useful to in-
troduce solvable models and analytic methods to extract
exact physical results.

The totally asymmetric simple exclusion model on
a one-dimensional lattice is one of the simplest exam-
ples from which exact results can be obtained. Such
systems consist of a lattice in which every site is ei-
ther empty or occupied by a single particle. Particles
can hop to the right, if their right-neighboring site is
empty. The steady-state of such systems have been ex-
tensively studied, for continuous-time as well as discrete-
time evolutions. Among the methods used to study the
steady-state properties of such systems is the matrix-
product ansatz, [11–15]. Various methods have also been
used to study the time-dependent state of such systems.
In [16–18], generalizations of the matrix-product ansatz
have been used to study asymmetric exclusion processes.
In [19], an explicit form for the conditional probability of
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finding particles on specific sites in a system of asymmetric
exclusion process was obtained in terms of a determinant.

In [19], the coordinate Bethe-ansatz is used to solve the
asymmetric simple exclusion process on a one-dimensional
lattice. In [1], a similar technique was used to solve the
drop-push model, and a generalized one-parameter model
interpolating between the asymmetric simple exclusion
model and the drop-push model. In [2], this family was
further generalized to a family of processes with arbitrary
left- and right-diffusion rates. All of these models were lat-
tice models. The behaviour of the latter model on a con-
tinuum was investigated in [3]. The discrete-time version
of the asymmetric exclusion process was discussed in [23].
In [20–22], a similar Bethe-ansatz approach was used to
study exclusion systems consisting of several kinds of par-
ticles.

Here we consider discrete-time asymmetric exclusion
processes in a one-dimensional lattice. The scheme of the
paper is the following. In Section 2, a system is introduced
which consists of a one-dimensional lattice in which each
of the sites are either empty or occupied by a single parti-
cle. A discrete-time evolution is introduced and it is shown
that the interaction between particles can be substituted
by a suitable boundary condition. In Section 3, the con-
ditional probability of occupied sites is obtained. In Sec-
tion 4, the drift rates for the two particle sector are calcu-
lated. In Section 5, the diffusion rate for the two particle
sector is calculated. Section 6 is devoted to the concluding
remarks.
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It is seen that for large times, the results of the
continuous-time evolution are recovered, namely that the
drift rates tend to the no-interaction drift rates, while
the diffusion rate is generally larger than the diffusion rate
of the non-interacting system.

2 A family of discrete-time exclusion
processes on a one-dimensional lattice

Consider a one-dimensional lattice, in which each site is
either empty or occupied by one particle. The probability
that the first particle is in x1, the second particle is in x2,
etc. is denoted by

P (x1, x2, . . . ), x1 < x2 < · · ·
The process is that each particle can hop to the right,
with the probability α, if the its right-hand side neighbor
is empty:

A∅ → ∅A, with the probability α. (1)

Consider the following evolution equation and boundary
condition for the two-particle sector.

P (x1, x2, t + 1) = (1 − α)2 P (x1, x2, t)

+ α (1 − α) [P (x1 − 1, x2, t) + P (x1, x2 − 1, t)]

+ α2 P (x1 − 1, x2 − 1, t) , x1 < x2, (2)

and

P (x, x) = λP (x, x+1)+µ P (x−1, x), λ+µ = 1. (3)

Equation (2) describes a system with a diffusion process
which occurs simultaneously for all particles. This is in
contrast to a system for which at each step only one par-
ticle can hop to the right (if its right-hand site is empty).
In the latter case, terms proportional to α2 would be omit-
ted from the above equation.

Using (3), it is seen that

P (x, x + 1, t + 1) =
[
(1 − α)2 + λα (1 − α)

]
P (x, x + 1, t)

+ α (1 − α)P (x − 1, x + 1, t)

+
[
α2 + µ α (1 − α)

]
P (x − 1, x, t). (4)

So it is seen that (2) and (3) describe a system where
particles can push:

AA∅ → ∅AA, with the probability β (5)

where

β = µ α (1 − α) + α2 = α − λα (1 − α). (6)

One can use (2) and (3), to obtain pushing rates in
multi-particle sectors as well. This is especially simple in

two cases: (λ = 1, µ = 0) and (λ = 0, µ = 1). In the
first case, one obtains

P (x, x + 1, . . . , x + n, t + 1) = (1 − α)
n∑

m=0

αm

× P (. . . , x + m − 2, x + m, . . . , x + n, t)

+ αn+1 P (x − 1, . . . , x + n − 1, t). (7)

It is seen that the rate of particles all hopping to right
is simply the rate of one particle hopping to right, to the
power of the the number of particles. This shows that there
is no pushing. This is the simple exclusion process.

For the second case, one obtains

P (x, x+1, . . . , x+n, t+1) = (1−α)n+1 P (x, . . . , x+n, t)

+ α

n∑

m=0

(1 − α)n−m

× P (. . . , x + m − 1, x + m + 1, . . . , x + n, t). (8)

This shows that there is a pushing process, the probability
of which does not depend on the length of the block:

A · · ·A∅ → ∅A · · ·A, with the probability α. (9)

This is the drop-push model.

3 The conditional probability

The n-particle analogue of (2), can be written as

P (x, t + 1) = (UP )(x, t),

= [(1 − α + α T1) · · · (1 − α + α Tn) P ] (x, t),
(10)

where

(TjP ) (x1, . . . , xn, t) :=
P (x1, . . . , xj − 1, . . . , xn, t) . (11)

For the evolution equation (10), the Bethe-ansatz solution
(the eigenvector of U) corresponding to the eigenvalue u is

u Ψ(x) = [(1 − α + α T1) · · · (1 − α + α Tn)Ψ ] (x), (12)

subject to the condition

Ψ (. . . , xj = x, xj+1 = x, . . . ) =

λΨ (. . . , xj = x, xj+1 = x + 1, . . . )

+ µ Ψ (. . . , xj = x − 1, xj+1 = x, . . . ) . (13)
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Using the Bethe-ansatz

Ψk(x) =
∑

σ

Aσei x·σ(k), (14)

where σ runs over n-permutations and

A1 = 1, (15)

one arrives at

u =
n∏

j=1

(
1 − α + α e−i kj

)
, (16)

and
Aσ σj = S

(
kσ(j), kσ(j+1)

)
Aσ, (17)

where σj changes j to j + 1 and j + 1 to j, and leaves the
other numbers between 1 and n intact, and

S (k1, k2) = −1 − λ ei k2 − µ e−i k1

1 − λ ei k1 − µ e−i k2
. (18)

This derivation is essentially the same as that used
in [1–3].

Using these, the conditional probability (of finding the
particles at x at the t, when they have been at y at the 0)
is obtained as

P (x, t;y, 0) =
∫

dnk

(2π)n
Ψk(x) e−i k·y ut, (19)

where the integration runs from 0 to 2π, for each of
the kj ’s. Also, to treat the singularity arising from S in Ψ ,
one is supposed to multiply λ and µ in the denominator
by e−ε. It is seen that the right-hand side is equal δx,y

(for x and y in the physical region). So, the right-hand
side satisfies the appropriate initial condition and evolu-
tion equation for the conditional probability, and hence is
the (unique) solution to the conditional probability.

4 The drift rates

In the two-particle sector, the one-particle probabilities
are defined as

P1(x, t) :=
∑

x2>x

P (x, x2, t)

P2(x, t) :=
∑

x1<x

P (x1, x, t) . (20)

From these,

P1(x, t + 1) = (1 − α)P1(x, t) + α P1(x − 1, t)
+ λα (1 − α) [P (x, x + 1, t) − P (x − 1, x, t)],

P2(x, t + 1) = (1 − α)P2(x, t) + α P2(x − 1, t)
+ µ α (1 − α) [P (x − 2, x − 1, t) − P (x − 1, x, t)]. (21)

Defining

〈X1〉(t) :=
∑

x

xP1(x, t),

〈X2〉(t) :=
∑

x

xP2(x, t), (22)

(the expectation value of the position of the first and sec-
ond particles) one has

〈X1〉(t + 1) = 〈X1〉(t) + α − λα (1 − α)Pr(1, t),
〈X2〉(t + 1) = 〈X2〉(t) + α + µ α (1 − α)Pr(1, t), (23)

where
Pr(x, t) :=

∑

y

P (y, y + x, t). (24)

Writing (19) for the two-particle sector,

P (x1, x2, t; y1, y2, 0) =
∫

d2k

(2π)2
[
ei (k1 x1+k2 x2)

− 1 − λ ei k2 − µ e−i k1

1 − λ ei k1 − µ e−i k2
ei (k2 x1+k1 x2)

]
e−i (k1 y1+k2 y2)

× (
1 − α + α e−i k1

)t (
1 − α + α e−i k2

)t
, (25)

one arrives at

Pr(x, t) =
∫

dk

2π

[
ei k x + e−i k (x−1)

]
e−i k (y2−y1)

× (
1 − α + α e−i k

)t (
1 − α + α ei k

)t
, (26)

where, using (24), the summation over y is done, which
leads to a delta function δ(k1 + k2), using which one of
the integrations is carried out.

A steepest descent calculation shows that if t is large
and x is not large,

Pr(x, t) ∼ 1
√

π α (1 − α) t
. (27)

So, for large t,

〈X1〉(t) = 〈X1〉(0) + α t − λ

[

2

√
α (1 − α) t

π
+ C + o(1)

]

,

〈X2〉(t) = 〈X2〉(0) + α t + µ

[

2

√
α (1 − α) t

π
+ C + o(1)

]

.

(28)

One also has

(〈X2〉 − 〈X1〉)(t + 1) =
(〈X2〉 − 〈X1〉)(t) + α (1 − α)Pr(1, t),

〈X〉(t + 1) = 〈X〉(t) + α

+
µ − λ

2
α (1 − α)Pr(1, t),

(µ 〈X1〉 + λ 〈X2〉)(t + 1) = (µ 〈X1〉 + λ 〈X2〉)(t) + α,
(29)
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where
〈X〉 :=

1
2

(〈X1〉 + 〈X2〉), (30)

is the expectation value of the position of the particles. So
for all times

(µ 〈X1〉 + λ 〈X2〉)(t) = (µ 〈X1〉 + λ 〈X2〉)(0) + α t, (31)

and for large times,

(〈X2〉 − 〈X1〉)(t) = (〈X2〉 − 〈X1〉)(0)

+ 2

√
α (1 − α) t

π
+ C + o(1),

〈X〉(t) = 〈X〉(0) + α t

+ (µ − λ)

[√
α (1 − α) t

π
+ C + o(1)

]

,

(32)

where C is a constant. So the drift rates at large t are

V1 :=
d〈X1〉

dt
= α − λ

√
α (1 − α)

π t
,

V2 :=
d〈X2〉

dt
= α + µ

√
α (1 − α)

π t
. (33)

〈X1〉 and 〈X2〉 are the expectation values of the posi-
tions of the first and second particles, respectively, and V1

and V2 are their corresponding velocities. As t is discrete,
these velocities are defined only when the Xi’s are smooth
functions of t, which happens at large times.

The above equations show that the drift velocities of
both particles approach α for large times. The reason is
that at large times the particles are far from each other
and effectively do not interact with each other. But the
next leading terms in velocities are negative for the first
particle and positive for the second particle, which is ex-
pected from the hindering effect of the second particle on
the first, and the pushing effect of the first particle on the
second. One can see that the results obtained in [3] are
recovered, provided one replaces α (1 − α) t with t.

5 The diffusion rate

Starting from (21), and defining
〈
X2

1

〉
(t) :=

∑

x

x2 P1(x, t),

〈
X2

2

〉
(t) :=

∑

x

x2 P2(x, t), (34)

one has
〈
X2

1

〉
(t + 1) =

〈
X2

1

〉
(t) + 2α 〈X1〉(t) + α

− λα (1 − α)
∑

x

(2x + 1)P (x, x + 1, t),

〈
X2

2

〉
(t + 1) =

〈
X2

2

〉
(t) + 2α 〈X2〉(t) + α

+ µ α (1 − α)
∑

x

(2x + 3)P (x, x + 1, t). (35)

Defining

〈X2〉 :=
1
2

(〈
X2

1

〉
+

〈
X2

2

〉)
,

∆2 := 〈X2〉 − (〈X〉)2, (36)

(∆2 is the variance of the position of the particles) one
arrives at

∆2(t + 1) = ∆2(t) + α (1 − α) + α (1 − α) (µ − λ)

×
[

1
2

∑

x

(2x + 1)P (x, x + 1, t) − Pr(1, t) 〈X〉(t)
]

+ α (1 − α) [µ − α (µ − λ)] Pr(1, t)

− α2 (1 − α)2 (µ − λ)2

4
P 2

r (1, t). (37)

From (27), it is seen that the last two terms on the right-
hand side vanish as t → ∞. One also has

∑

x

(2x + 1)P (x, x + 1, t) =
∑

x

∫
d2k

4π2
(2x + 1) ei(k1+k2) x

×
[
ei k2 − 1 − λ ei k2 − µ e−i k1

1 − λ ei k1 − µ e−i k2
ei k1

]
e−i (k1 y1+k2 y2)

× (
1 − α + α e−i k1

)t (
1 − α + α e−i k2

)t
,

=
∫

d2k

4π2
[2π δ (k1 + k2) − 4π i δ′ (k1 + k2)]

×
[
ei k2 − 1 − λ ei k2 − µ e−i k1

1 − λ ei k1 − µ e−i k2
ei k1

]
e−i (k1 y1+k2 y2)

× (
1 − α + α e−i k1

)t (
1 − α + α e−i k2

)t
. (38)

Here δ′ is the derivative of δ with respect to its argu-
ment. We are seeking those terms on the right-hand side
of (37), which don’t vanish as t → ∞. On the right-
hand side of (38), it is seen that the terms proportional to
δ(k1 +k2) in the integrand, give rise to terms proportional
to t−1/2 (for large t). (In fact these terms are proportional
to Pr(1, t).) Denoting the terms coming from that part of
the integrand which is proportional to δ′(k1 + k2) by I,
one has

I =
∫

i d2k

π
δ(k1 + k2)

∂

∂k2

×
{[

ei k2 − 1 − λ ei k2 − µ e−i k1

1 − λ ei k1 − µ e−i k2
ei k1

]
× e−i (k1 y1+k2 y2)

× (
1 − α + α e−i k1

)t (
1 − α + α e−i k2

)t

}

. (39)

Differentiation of the fraction, S(k1, k2), needs some care.
The derivative of this fraction is singular at k1 = k2 =
0. To remove this singularity, one has to replace k1 with
k1 + i ε in the denominator. This prescription guaranties
that in (25), the integral of the second term on the right-
hand side tends to zero as x2 tends to infinity. We are
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interested in the behavior of I for large times, and this is
determined by the behavior of the integrand multiplier of
δ(k1 + k2) for k1 = −k2, where k2 is small. One has

∂

∂k2

(
1 − λ ei k2 − µ ei k1

1 − λ ei k1 − µ ei k2

) ∣
∣
∣
k1=−k2=−k∼0

=

− i
λ ei k − µ

1 − ei k

∣∣
∣
k∼0

, =
µ − λ

k − i ε

∣∣
∣
k∼0

,

= (µ − λ) pf
(

1
k

)
+ i π (µ − λ) δ(k). (40)

Here pf means a pseudo-function (the Cauchy principal
value in integration). Putting this in (39), and keeping
only terms which don’t vanish as t → ∞, one arrives at

I =
∫

i dk

π
[−i π (µ − λ) δ(k) + 2 (−i α t)

× (
1 − α + α ei k

)t (
1 − α + α e−i k

)t
]

+ · · · ,

= (µ − λ) +
2α t

√
π α (1 − α) t

+ · · · (41)

So,
∑

x

(2x + 1)P (x, x + 1, t) =

(µ − λ) +
2α t

√
π α (1 − α) t

+ · · · (42)

Using (27) and (32), one arrives at

Pr(1, t) 〈X〉(t) =
µ − λ

π
+

α t
√

π α (1 − α) t
+ · · · (43)

Putting (42) and (43) in (37), one arrives at

∆2(t + 1) =

∆2(t) + α (1 − α)
[
1 + (µ − λ)2

(
1
2
− 1

π

)]
+ · · · , (44)

from which,

lim
t→∞

d∆2

dt
= α (1 − α)

[
1 + (µ − λ)2

(
1
2
− 1

π

)]
. (45)

This diffusion rate, is again defined only at large times,
when one can treat ∆2 as a function of continuous time.
It is seen that it is in agreement with that obtained in [3],
provided one replaces α (1 − α) t with t.

6 Concluding remarks

The main result of the paper was to introduce a
discrete-time discrete-space model, solvable through the

Bethe-ansatz method. The model contains a free param-
eter (say λ) that for certain values reproduces the sim-
ple exclusion model and the drop-push model. The condi-
tional probability of finding particles at different sites was
obtained as a function of time, from which in principle
one can derive any correlation function. The conditional
probabilities were calculated for the general multi-particle
sector. The drift- and diffusion-rates, however, were ex-
plicitly calculated only for the two-particle sector, and
it was shown that the results agreed with those of the
continuous-time system at large-times. There remains the
question of performing similar calculations for the multi-
particle sector. For large times, one can put forward the
following arguments. For large times, only the behavior of
the integrand in (19) around k = 0 is important, and it is
seen that for λ = µ, there is no pole in the scattering ma-
trix S. In fact, S becomes one for λ = µ and k = 0, which
shows that for λ = µ and for large times, the conditional
probability takes the form

P (x, t;y, 0) =
∑

σ

P0[σ(x), t;y, 0], (46)

where P0 is the conditional probability of a system con-
sisting of free particles hopping to the right, which cor-
responds to the one obtained with S = 0 in (19). This
shows that for λ = µ, at large times the system behaves
collectively as a collection of free particles. Hence the drift-
and diffusion-rates should be α and α(1−α) respectively,
which agrees with the particular case of the two-particles.

For the general case λ �= µ, at large times the par-
ticles will generally be far from each other. The interac-
tion terms coming from the scattering matrix, are in the
from of products of two-particle scattering matrices. So
it is plausible that for large times and for calculating up
to 2-point functions, one neglects more-than two-particle
interactions and interactions between non-adjacent parti-
cles. Then, from the n! terms in the Bethe-ansatz solution
for the n-particle sector, there remains only n terms. The
drift rate at large times is expected to remain α again.
For the diffusion rate, one can argue that it should be
α(1−α) (the free-particle value) plus a function of (µ−λ)
which vanishes at µ = λ. The additional term comes from
the interaction of the neighboring particles. So it is ex-
pected to be proportional to (λ − µ)2. This shows that
the drift- and diffusion-rates obtained for the two-particle
sector at large times, serve as qualitative results for the
multi-particle sector as well.
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